In this paper we consider the oscillation of a sixth-order half-linear differential equation for the p-Laplacian like operator with a retarded argument of the form (r(t)|x(v) (t)|p-2 x(v) (t))' +q(t)|x(τ (t))|p-2 x(τ(t))=0. Here the coefficients of the equation satisfy the given conditions. Interest in the study of differential equations with delay is associated with a wide range of applied problems and the development of the theory of ordinary differential equations. The presence of delay in mathematical models and differential equations is a complicating factor, which, as a rule, leads to a narrowing of the stability region of the resulting solutions. The study and solution of ordinary differential equations with delay are comparable in complexity to the study and solution of partial differential equations without delay. To obtain the criterion of oscillation for the equation under consideration, a comparison theorem with a first-order differential equation with delay is proved, to which the previously known oscillatory criterion can be applied.
KOSHKAROVA B.S.
Candidate of Physical and Mathematical Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
Е-mail: b-koshkarova@yandex.kz, https://orcid.org/0000-0002-0228-4110
ALDAY M.
Candidate of Physical and Mathematical Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
Е-mail: saiajan@yandex.kz, https://orcid.org/0000-0002-6073-2313
BURGUMBAYEVA S.К.
PhD, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
Е-mail: burgumbayeva_sk@enu.kz, https://orcid.org/0000-0003-2334-7405
- Glazman, I.M. (1963). Pryamye metody kachestvennogo spektral'nogo analiza singulyarnyh differencial'nyh operatorov [Direct methods for qualitative spectral analysis of singular differential operators]. Moskva: Fizmatlit [in Russian].
- Dolgij, Yu.F., Surkov, P.G. (2012). Matematicheskie modeli dinamicheskih sistem s zapazdyvaniem [Mathematical models of dynamic systems with delay]. Ekaterinburg: Izd-vo Ural. un-ta [in Russian].
- Polyanin, A.D., Sorokin, V.G., Zhurov, A.I. (2022). Differencial'nye uravneniya s zapazdyvaniem: svojstva, metody, resheniya i modeli [Differential equations with delay: properties, methods, solutions and models]. Moskva: IPMekh RAN [in Russian].
- Hale, J.K. (1994). Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl., 39, 339–344.
- MacDonald, N. (1989). Biological Delay Systems: Linear Stability Theory. Cambridge: Cambridge University Press.
- Bohner, M., Hassan, T.S., Li, T. (2018). Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math., Vol. 29(2), 548–560. DOI: 10.1016/j.indag.2017.10.006 DOI: https://doi.org/10.1016/j.indag.2017.10.006
- Chiu, K.-S., Li, T. (2019). Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr., Vol. 292(10), 2153–2164. DOI: 10.1002/mana.201800053 DOI: https://doi.org/10.1002/mana.201800053
- Agarwal, R.P., Bazighifan, O., Ragusa, M.A. (2021). Nonlinear neutral delay differential equations of fourth-order: oscillation of solutions. Entropy, Vol. 23(2), No 129, 1-10. DOI: 10.3390/e23020129 DOI: https://doi.org/10.3390/e23020129
- Tang, S., Li, T., Thandapani, E. (2013). Oscillation of higher-order half-linear neutral differential equations. Demonstr. Math., Vol. 46, No 1, 101–109. DOI: 10.1515/dema-2013-0444 DOI: https://doi.org/10.1515/dema-2013-0444
- Bohner, M., Li, T. (2014). Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett., Vol. 37, 72–76. DOI: 10.1016/j.aml.2014.05.012 DOI: https://doi.org/10.1016/j.aml.2014.05.012
- Bohner, M., Li, T. (2015). Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. Vol. 58(7), 1445–1452. DOI: 10.1007/s11425-015-4974-8 DOI: https://doi.org/10.1007/s11425-015-4974-8
- Dzurina, J., Grace, S.R., Jadlovska, I., Li, T. (2020). Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr., 293(5), 910–922. DOI: 10.1002/mana.201800196 DOI: https://doi.org/10.1002/mana.201800196
- Li, T., Pintus, N., Viglialoro, G. (2019). Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys., Vol. 70(3), 1-18. DOI: https://doi.org/10.1007/s00033-019-1130-2 DOI: https://doi.org/10.1007/s00033-019-1130-2
- Li, T., Baculikova, B., Dzurina, J., Zhang, C. (2014). Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl., Vol. 56, 41–58. DOI: 10.1186/1687-2770-2014-56 DOI: https://doi.org/10.1186/1687-2770-2014-56
- Bazighifan, O., Al-Ghafri, K., Al-Kandari, M., Ghanim, F., Mofarreh, F. (2022). Half-linear differential equations of fourth order: oscillation criteria of solutions. Advances in Continuous and DiscreteModels, 1-12. https://doi.org/10.1186/s13662-022-03699-4 DOI: https://doi.org/10.1186/s13662-022-03699-4
- Agarwal, R., Grace, S., O’Regan, D. (2000). Oscillation Theory for Difference and Functional Differential Equations. Dordrecht: Kluwer Academic. DOI: 10.1007/978-94-015-9401-1 DOI: https://doi.org/10.1007/978-94-015-9401-1_2
- Chatzarakis, G.E., Grace, S.R., Jadlovska, I., Li, T., Tunc, E. (2019). Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity, Vol. 8, 1-11. DOI: 10.1155/2019/5691758 DOI: https://doi.org/10.1155/2019/5691758
- Philos, C. (1981). On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. Basel, Vol. 36, Р. 168–178. DOI: https://doi.org/10.1007/BF01223686
- Koplatadze, R.G., Chanturiya, T.A. (1982). O koleblyushchihsya i monotonnyh resheniyah differencial'nyh uravnenij pervogo poryadka s otklonyayushchimsya argumentom [On oscillating and monotonic solutions of first-order differential equations with deviating argument]. Differenc. Uravneniya, Vol. 18, No 8, 1463–1465 [in Russian].