DYNAMICS OF THE FLOW OF CHARGED PARTICLES FROM A POINT SOURCE IN A TRANSAXIAL MIRROR

Published 2024-07-05
PHYSICS-MATHEMATICS Vol. 65 No. 3 (2021)
№3 (2021)
Authors:
  • I.F. SPIVAK-LAVROV
  • О.A. BAISANOV
  • S.U. SHARIPOV
  • G.T. URINBAEVA
PDF (Russian)

The motion of charged particles emerging from a point source located in the middle plane of the transaxial mirror is considered. A three-electrode transaxial mirror is two parallel plates cut by straight circular cylinders of radius R1 and R2, whose axis coincides with the axis z. Using the methods of the theory of functions of a complex variable, we obtained expressions for calculating the harmonic component F(η,ζ). Analytical expressions for the field potential of a transaxial mirror give a good approximation for the potential φ(η,ζ ) and at the same time exactly satisfies the given Dirichlet boundary conditions and satisfies the two-dimensional Laplace equation. It is shown that as a result of reflection in a three-electrode transaxial mirror, a parallel volume beam can be formed. This property of transaxial mirrors can be used to create highly efficient time-of-flight mass spectrometers. A fairly simple analytical expression for the electrostatic potential of a three-electrode transaxial lens is also obtained, which can also used to calculate transaxial mirrors. To calculate the trajectories of particles, the dimensionless Newton equations and analytical expressions for the potential are used, which describe the field of a three-electrode transaxial mirror with good accuracy. Two modes of vertical beam focusing are calculated.

  1. Гликман Л.Г. Электронно-оптические параметры трехэлектродных трансаксиальных цилиндрических линз / Л.Г. Гликман и др. // ЖТФ. – 1971. – Т. 41. – № 2. – С. 330-335.
  2. Кельман В.М. Электронно-оптические элементы призменных спектрометров заряженных частиц / В.М. Кельман, С.П. Карецкая, Л.В. Федулина, Е.М. Якушев. – АлмаАта: «Наука» КазССР, 1979. – 232 с.
  3. Тихонов А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. – М.: Наука, 1977. – 736 с.
  4. Spivak-Lavrov I.F. Analytical Methods for The Calculation and Simulation of New Schemes of Static and Time-of-Flight Mass Spectrometers / I.F. Spivak-Lavrov // Burlington: Advances in Imaging and Electron Physics. – 2016. – V. 193. – Р. 45-128. DOI:
  5. 1016/bs.aiep.2015.10.001.
  6. Spivak-Lavrov I.F. Ways of Developing Analyzers for Static Mass Spectrometers / I.F. Spivak-Lavrov, О.А. Baisanov, A.A. Nurmukhanova // Bulletin of the Russian Academy of Sciences: Physics. – 2018. – V. 82. – №. 10. – Р. 1353–1358. DOI: 10.3103/S1062873818100210.
  7. Спивак-Лавров И.Ф. Масс-анализатор с конусовидной ахроматичной призмой и трансаксиальными линзами / И.Ф. Спивак-Лавров, А.А. Нурмуханова, Т.Ж. Шугаева. // Научное приборостроение. – 2019. – Т. 29. – № 1. – С. 116-125.
  8. Spivak-Lavrov I.F. Prismatic mass analyzer with the conical achromatic prism and transaxial lenses / I.F. Spivak-Lavrov, T.Zh. Shugaeva, T.S. Kalimatov. International Journal of Mass Spectrometry. – 2019. – Vol. 444. – Р. 1-6. DOI: 10.1016/j.ijms.2019.116180
  9. Spivak-Lavrov I.F. Solutions of the Laplace equation in cylindrical coordinates, driven to 2D harmonic potentials / I.F. Spivak-Lavrov, T.Zh. Shugaeva, S.U. Sharipov // Burlington: Advances in Imaging and Electron Physics. – 2021. – V. 215. – Р. 181-193. DOI:
  10. 1016/bs.aiep.2020.06.006.
  11. Лаврентьев М.А. Методы теории функций комплексного переменного / М.А. Лаврентьев, Б.В. Шабат. – М.: Наука, 1976. – 716 с.
a charged particle, transaxial electrostatic mirror, dimensionless Newton equations, telescopic system, scalar potential, the trajectory of particles

How to Cite

DYNAMICS OF THE FLOW OF CHARGED PARTICLES FROM A POINT SOURCE IN A TRANSAXIAL MIRROR. (2024). Scientific Journal "Bulletin of the K. Zhubanov Aktobe Regional University", 65(3). https://vestnik.arsu.kz/index.php/hab/article/view/177