METHOD FOR SOLVING LINEAR MATRIX DIFFERENTIAL EQUATIONS SYSTEMS WITH DIFFERENTIATION OPERATOR

Published 2024-12-31
PHYSICS-MATHEMATICS Vol. 78 No. 4 (2024)
№4 (2024)
Authors:
  • SARTABANOV ZH.A.
  • ZHUMAGAZIEV A.KH.
  • KHAMIMOVA Z.K.
PDF (Kazakh)

This article discusses a linear system of inhomogeneous equations with a differentiation operator for a scalar argument. Cauchy problems for both homogeneous and inhomogeneous systems of equations are studied. The properties of helical characteristics and initial characteristic integrals are established. A new method for studying systems with two differentiation operators is developed based on the transition from a scalar argument to a vector argument. The analytical form of the unique solution to the initial problem for a system with two differentiation operators in a vector-matrix form is found. Integral representations of the unique solution to a system of equations with a differentiation operator in vector form, defined on a cylindrical surface, are obtained for the cases of trivial and periodic initial conditions. As a result of the study, a new method for solving initial value problems for linear homogeneous and inhomogeneous systems with two differentiation operators is developed, based on the transition to a system with one differentiation operator, from which a scheme for studying such systems is provided. The article uses the results and methods of the scientific project "Method of periodic characteristics in the study of oscillations in systems with a diagonal differentiation operator."

SARTABANOV ZH.A.

Doctor of Physical and Mathematical Sciences, Professor, Aktobe Regional University named after K. Zhubanov, Aktobe, Kazakhstan.

E-mail: sartabanov42@mail.ru, https://orcid.org/0000-0003-2601-2678

ZHUMAGAZIEV A.KH.

PhD, Aktobe Regional University named after K. Zhubanov, Aktobe, Kazakhstan.

E-mail: azhumagaziyev@zhubanov.edu.kz, https://orcid.org/0000-0002-6007-3311

KHAMIMOVA Z.K.

Master's student, Aktobe Regional University named after K. Zhubanov, Aktobe, Kazakhstan.

E-mail: hamimova.zarina@mail.ru, https://orcid.org/0009-0007-3871-3275

  1. Zhumagaziyev A.Kh., Sartabanov Zh.A., Sultanaev Ya.T. On a new method for investigation of multiperiodic solutions of quasilinear strictly hyperbolic system // Azerbaijan Journal of Mathematics, (2022), Vol. 12, №1, P. 32-48. (WoS Q2) WOS:000824351800003.
  2. Умбетжанов Д.У., Почти периодические решения эволюционных уравнений, Алма-Ата: Наука, (1990), 184 с.
  3. Сартабанов Ж.А. Периодичность характеристик оператора дифференцирования по диагонали// Вестник КазНПУ им. Абая, серия «Физико-математические науки». -2023, - Т.82. - №2. - С. 40-53. 2 вместо 3
  4. Харасахал В.Х., Почтипериодические решения обыкновенных дифференциальных уравнений, Алма-Ата: Наука, (1970),-200
  5. Гантмахер Ф.Р. Теория матриц. – М.: ФИЗМАТЛИТ, 2010. – 560 с.
  6. Матросов, В.Л. Дифференциальные уравнения и уравнения с частными производными: Учебник для студентов вузов / В.Л. Матросов, Р.М. оглы Асланов, М.В. Топунов. - М.: ВЛАДОС, 2011. - 376 c.
differentiation operator, initial conditions, uniqueness of the solution, periodicity, helical characteristics, linear system, matrix

How to Cite

METHOD FOR SOLVING LINEAR MATRIX DIFFERENTIAL EQUATIONS SYSTEMS WITH DIFFERENTIATION OPERATOR. (2024). Scientific Journal "Bulletin of the K. Zhubanov Aktobe Regional University", 78(4), 40-53. https://doi.org/10.70239/arsu.2024.t78.n4.04