CALCULATION OF THE ADIABATIC TEMPERATURE OF SELF-PROPAGATINGHIGH-TEMPERATURE SYNTHESIS IN THE Fe-Cr-N AND Fe-Si-N SYSTEM

Published 2024-07-03
METALLURGICAL PROCESSES AND TECHNOLOGIES Vol. 71 No. 1 (2023)
№1 (2023)
Authors:
  • D.A. YESSENGALIYEV
  • D.K. AKMYRZAYEVA
  • A.A. ABILBERIKOVA
PDF (Russian)

The article is devoted to the utilization of dispersed waste from the production of ferrochrome and ferro-silicium. The information on the formation and accumulation of dust from the crushing of ferroalloys at
ferroalloy plants is given and the disadvantages of known methods for the disposal of such dust are shown. Comparative technologies of SHS synthesis are presented. Depending on the use of the initial reagents, metallurgical SHS processes are divided into gas-free, gas-absorbing, gas-releasing. At the same time, gorenje modes differ significantly during their implementation. For the implementation of the metallurgical SHS process, the adiabatic temperature was calculated for
the Fe-Cr-N and Fe-Si-N systems, where the main condition for determining the adiabatic gorenje temperature is the equality of enthalpy of the starting substances at the initial temperature To and the final products at the temperature Tad. To search for thermodynamic characteristics of individual substances and complex compounds, the “HSC Chemistry 6.0” software package was used. The possibility of determining the maximum temperature of the process and calculating the composition of synthesis products is shown. The adiabatic combustion temperature of chromium nitrites and silicon nitride was calculated, then with an iron content of 10-50% in the product. It was found that the maximum adiabatic temperature for the Fe-Cr-N and Fe-Si-N systems was Tad = 2060 °C and Tad = 4200 °C, respectively. At the same time, an increase in the concentration of iron in the system contributes to a decrease in the adiabatic combustion temperature of mixtures due to the formation of stable silicides.

  1. Гасик М.И., Лякишев Н.П., Емлин Б.И. Теория и технология производства ферросплавов. – М.: Металлургия, 1988. – 784 с.
  2. Павлов С.В., Снитко Ю.П., Плюхин С.Б. Отходы и выбросы при производстве ферросилиция / Электрометаллургия. 2001. №4. - С. 22-28.
  3. Канаев Ю.П., Бондарев А.А., Брыляков В.И. и др. Освоение переплава ферросилициевой мелочи с получением чистых марок ферросилиция и комплексных модификаторов / Сталь. 2000. №10. - С. 67-70.
  4. Зиатдинов М.Х., Шатохин И.М., Леонтьев Л.И. СВС технология композиционных ферросплавов. Часть I. Металлургический СВС процесс. Синтез нитридов феррованадия и феррохрома / Известия высших учебных заведений. Черная металлургия. 2018. Т.61. №5. С. 339-346.
  5. Мержанов А.В. Мукасьян А.С. Твердопламенное горение. – М.: ТОРУС ПРЕСС, 2007. – 356 с.
  6. Мержанов А.Г. Научные основы, достижения и перспективы развития процессов твердопламенного горения / Известия РАН. Серия химическая. 1997. Т. 46. №1. - С. 7-31.
  7. Мизин В.Г., Чирков Н.А., Игнатьев В.С. и др. Ферросплавы. Справочные издание. – М.: Металлургия, 1988. – 784 с.
  8. Подболотов К.Б. Дятлова Е.М., Хина Б.Б. Термодинамический анализ процессов самораспространяющегося высокотемпературного синтеза керамических материалов / Труды БГТУ. 2011. №3. - С. 134-136.
ferroalloys, dispersed waste, product of capture from crushing, self-propagating high-temperature synthesis, adiabatic temperature, enthalpy

How to Cite

CALCULATION OF THE ADIABATIC TEMPERATURE OF SELF-PROPAGATINGHIGH-TEMPERATURE SYNTHESIS IN THE Fe-Cr-N AND Fe-Si-N SYSTEM. (2024). Scientific Journal "Bulletin of the K. Zhubanov Aktobe Regional University", 71(1). https://vestnik.arsu.kz/index.php/hab/article/view/60

Download Citation