CALCULATION OF A TIME OF FLIGHT MASS SPECTROMETER BASED ON AXISYMMETRIC CYLINDRICAL MIRRORS

Published 2024-07-05
PHYSICS-MATHEMATICS Vol. 65 No. 3 (2021)
№3 (2021)
Authors:
  • I.F. SPIVAK-LAVROV
  • T.ZH. SHUGAYEVA
  • S.U. SHARIPOV
PDF (Russian)

This article discusses the properties of a time-of-flight mass spectrometer, the ion-optical path of which contains a pulsed annular ion source and an electrostatic deflector with electrodes in the form of cylinders of equal diameter with a common axis. The high efficiency of wedge-shaped mirrors with a two-dimensional field is due to the fact that the rear electrode of the mirror is made in the form of a concave cylinder and the focusing properties of the mirror can be changed by changing the curvature of the electrode. There are two modes of space-time-of-flight focusing: “ring-axis” and “axis-ring”. The potential distribution in such a system is presented in a simple analytical form. To find the trajectories and time of flight of charged particles in the electrostatic field of the deflector, the
dimensionless Newton equations are used, which are integrated by the Adams method with an automatic choice of the integration step. The accelerating points were found by the method of successive approaches of Krylov. The relative accuracy of integration was chosen equal to10−9. The spatial focusing and the time of arrival of particles to the detector plane were calculated by the Monte Carlo method with a normal distribution of events in a given interval of initial parameters. Calculations have shown that the resolution of a TOF mass spectrometer can be increased to 5000 (at the level of 50% of the peak heights).

  1. Mamyrin B.A. Time-of-flight mass spectrometry (concepts, achievements, and prospects). / B.A. Mamyrin // International Journal of Mass Spectrometry. — 2001. — Vol. 206, Iss. 3. — Р. 251-266. DOI:https://doi.org/10.1016/S1387-3806(00)00392-4
  2. Mirgorodskaya O.A. Electrospray-ionization time-of-flight mass spectrometry in protein chemistry / O.A. Mirgorodskaya, A.A. Shevchenko, I.V. Chernushevich, A.F. Dodonov, A.I. Miroshnikov // Analytical Chemistry. — 1994. — Vol. 66, №1. —Р. 99-107.
  3. DOI:https://doi.org/10.1021/ac00073a018
  4. Dodonov A.F. Electrospray Ionization on a Reflecting Time-of-Flight Mass Spectrometer / A.F. Dodonov, I.V. Chernushevich, V.V. Laiko // ACS Symposium Series. — 1993. — №549. — Р. 108-123.
  5. Patent 2080021 UK. Time-of-flight mass spectrometer. / H.А. Wollnik — January 1982.
  6. Price D. The renaissance of time-of-flight mass spectrometry / Price D., Milnes G.J. // International Journal of Mass Spectrometry and Ion Processes. — 1990. — № 99. — Р.1-39. DOI:https://doi.org/10.1016/0168-1176(90)85019-X
  7. Patent SU 1725289 A1. Time-of-flight mass spectrometer with multiple reflection. / L.M. Nazarenko, L.M. Sekunova, Е.М. Yakushev— 1989.
  8. Явор М.И. Планарный многоотражательный времяпролетный масс-анализатор, работающий без ограничения диапазона масс / М.И. Явор, А.Н. Веренчиков // Научное приборостроение. — 2004. — Т. 14, №2. — C. 38–45.
  9. Голиков Ю.К. Теория синтеза электростатических энергоанализаторов. / Ю.К. Голиков, Н.К. Краснова // — Изд-во Политехнического университета, Санкт-Петербург, 2010. — 409 с.
  10. Yavor M. Planar multi-reflecting time-of-flight mass analyzer with a jig-saw ion path / M.Yavor, A. Verentchikov, Ju. Hasin, B. Kozlov, M. Gavrik, A. Trufanov, // Physics Procedia. — 2011.—Vol. 1. — P. 391–400. DOI:https://doi.org/10.1016/j.phpro.2008.07.120
  11. Bimurzaev S. B. Time-of-flight mass-spectrometer with high resolution and sensitivity via elimination of chromatic TOF aberrations of higher orders / S.B. Bimurzaev // International Journal of Mass Spectrometry. — 2015. — Vol. 376. — P. 23–26.
  12. DOI:https://doi.org/10.1016/j.ijms.2014.11.007
  13. Bimurzaev S.B. Planar multi-reflecting time-of-flight mass-spectrometer of a simple design / S.B. Bimurzaev // Advances in Imaging and Electron Physics. — Academic Press, Burlington, 2019. — P. 3-13. DOI:https://doi.org/10.1016/bs.aiep.2019.08.001
  14. Spivak-Lavrov I.F. Analytical Methods for The Calculation and Simulation of New Schemes of Static and Time-of-Flight Mass Spectrometers / I.F. Spivak-Lavrov // Advances in Imaging and Electron Physics. — Academic Press, Burlington, 2016.— P. 45-128.
  15. DOI:https://doi.org/10.1016/bs.aiep.2015.10.001
  16. Spivak-Lavrov I.F. Solutions of the Laplace equation in cylindrical coordinates, driven to 2D harmonic potentials / I.F. Spivak-Lavrov, T.Zh. Shugaev, S.U. Sharipov // Advances in Imaging and Electron Physics. — Academic Press, Burlington, 2020. — P. 181-193.
  17. DOI:https://doi.org/10.1016/bs.aiep.2020.06.006
time-of-flight mass spectrometer, mirrors and lenses with axial symmetry, focusing, potential, trajectory of charged particles, dimensionless Newton equations.

How to Cite

CALCULATION OF A TIME OF FLIGHT MASS SPECTROMETER BASED ON AXISYMMETRIC CYLINDRICAL MIRRORS. (2024). Scientific Journal "Bulletin of the K. Zhubanov Aktobe Regional University", 65(3). https://vestnik.arsu.kz/index.php/hab/article/view/178