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Abstract. Traditional secret sharing schemes assume that all participants within a group or compartment possess
equal authority in reconstructing the secret. However, in many real-world applications, such as hierarchical
organizational structures or secure multi-party collaborations, this assumption does not hold. To address this limitation,
we propose a novel Multilevel Compartment Threshold Secret Image Sharing (MCT-SIS) scheme that introduces
hierarchical privileges within each compartment. Our scheme is based on a combination of Tassa’s hierarchical access
structure and Ghodosi’s compartment model, and utilizes Birkhoff interpolation and polynomial-based techniques to
achieve robust and flexible secret image sharing. Participants are grouped into disjoint compartments, each with
multiple levels of access, and the secret image is shared such that it can only be reconstructed when both compartmental
and hierarchical threshold conditions are satisfied. The scheme ensures perfect secrecy, lossless reconstruction, and
reduced storage overhead. Experimental results validate its feasibility and demonstrate its applicability to environments
requiring fine-grained access control, such as collaborative data vaults, medical imaging systems, and secure multi-
agency operations.

Key words: secret image sharing, threshold scheme, multilevel compartment, Birkhoff interpolation,
hierarchical security.

Introduction

A (t,n)-threshold secret sharing scheme distributes a secret S among n participants so that any
subset of at least t participants (t<n) can reconstruct S, whereas any coalition of fewer than t (i.e., at
most t—1) learns nothing about it; such schemes are perfect when this zero-information property
holds. The family of all authorized subsets is called the access structure and is denoted I'. An access
structure is monotone: if AEI" and ASB then BET.

Secret sharing is a vital cryptographic primitive that allows a secret to be distributed among
multiple participants such that only predefined subsets of participants, defined by an access
structure, can recover the original secret. This concept was first introduced independently by
Shamir [1] and Blakley [2] in 1979. Shamir’s scheme utilizes polynomial interpolation over finite
fields, while Blakley’s method is based on geometric constructions. These foundational methods are
both perfect (no information leakage to unauthorized subsets) and ideal (each share has the same
size as the secret).

Classical threshold secret sharing assumes equal authority among all participants within the
authorized sets. However, in real-world applications such as secure military coordination, inter-
agency document access, corporate key management, and e-health systems, participants often hold
different roles and levels of authority. This limitation motivated the introduction of compartment-
based access structures, pioneered by Simmons [3], where participants are grouped into disjoint
compartments, each with its own threshold, along with a global threshold that must be satisfied to
reconstruct the secret.

Despite this advance, the assumption that all participants within a compartment have the same
authority is still unrealistic for many practical scenarios. To overcome this, multilevel compartment
threshold secret sharing schemes (MLCT-SSS) were proposed, combining compartmental and
hierarchical structures. Tassa [13] and Ghodosi et al. [6] provided seminal contributions in this
direction, proposing schemes that handle intra-compartment hierarchy using interpolation
techniques such as Birkhoff interpolation.
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Recent studies have increasingly focused on applying these advanced access structures to
multimedia data, especially secret image sharing (SIS). For instance, Thien and Lin [7] proposed a
reduced-share-size image sharing scheme using 8-bit gray images and polynomial interpolation.
More recently, Guo et al. [14] developed hierarchical threshold SIS methods for multi-user secure
image distribution. Pakniat and Eslami [15] introduced a hierarchical threshold image sharing
scheme with enhanced robustness. Additionally, Chen et al. [16] and Zhou et al. [17] have explored
convolutional neural network (CNN)-based and hybrid encryption techniques to incorporate Al and
deep learning into secret image sharing.

Therefore, in this study, we propose a perfect and ideal multilevel compartment threshold
secret image sharing scheme. This scheme: partitions participants into distinct compartments;
assigns them different levels of authority within each compartment; enforces both local
(compartment-level) and global threshold conditions; uses Birkhoff interpolation and polynomial-
based schemes for share generation; reduces the size of the shadow images, thereby lowering
storage and transmission costs; and prevents lower-level participants from substituting higher-level
ones during reconstruction.

This approach is particularly relevant in contemporary scenarios such as federated security
systems, cloud-based confidential image exchange, and collaborative medical diagnostics. Our
method ensures that only authorized participant groups with proper hierarchical configuration can
reconstruct the secret image.

Simmons has described compartment threshold access structure as follows:

Definition 1: Let C = {Ci, Ca,..., Cn} denote m disjoint compartments of n participants,
where (U = {1,2, ... ,n})and CNCj=Q forall 1 <i<j<m. Letti € N,I <i<mis represent the
threshold of each compartment, and t € N denote the global threshold such that t > Z}nzl t;.
Compartment access structure is described as follows:

- JA cU:3IPcVsuchthat |PNG 2t
B lliﬁ.fim and | P =t

Several studies have addressed the realization of such compartment access structures. Tassa et
al. [4], Brickell et al. [5], and Ghodosi et al. [6] have proposed secret sharing schemes supporting
this model. Tassa and Dyn proposed an ideal and perfect secret sharing scheme for two types of
compartment structures-lower and upper bounds-based on bivariate Lagrange interpolation. Brickell
et al. proved that ideal secret sharing schemes exist for compartment structures and constructed an
efficient implementation in the specific case where t = Y7, t;.

Ghodosi et al. introduced a perfect and ideal scheme for hierarchical and compartment-based
structures. In their approach, the authority levels of participants within a company (or compartment)
differ, meaning not all participants have equal power to reconstruct the secret. Their method first
divides the overall secret into partial secrets, one for each compartment, and then distributes these
partial secrets among participants. In the reconstruction phase, each compartment recovers its
partial secret independently. The final secret is then obtained by combining all recovered partials.

In practical applications, secret images often need to be securely shared among participants
who are organized into disjoint compartments. To address this, we propose a multilevel
compartment threshold secret image sharing scheme.

In 2002, Thien and Lin [7] introduced a secret sharing scheme for 8-bit grayscale images
based on Shamir’s method. Their method allowed slight truncation for pixel values in the range
251-255 to meet the modulus requirement of a prime number. To achieve lossless reconstruction,
they proposed a minor extension that marginally increased the data size, which was acceptable due
to the limited number of affected pixels.

Secret image sharing has since been widely studied [8—11]. However, most of these schemes
are based on classical (t,n)-threshold structures and do not support hierarchical or compartmental
constraints. In 2012, Guo et al. [12] proposed a hierarchical threshold secret image sharing scheme
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based on Tassa’s hierarchical model [13]. In their scheme, the secret image is embedded into cover
images and can only be reconstructed if the hierarchical threshold conditions are satisfied.
However, they identified certain security weaknesses in their approach.

To address these concerns, Pakniat et al. [14] developed a secure hierarchical threshold secret
image sharing scheme using cellular automata and Birkhoff interpolation, overcoming the
limitations found in Guo et al.'s method.

The structure of this paper is organized as follows: Section 2 reviews Shamir’s (t,n) threshold
secret sharing scheme and Tassa’s hierarchical model; Section 3 presents the proposed multilevel
compartment secret image sharing scheme; Section 5 demonstrates experimental results. Finally,
Section 6 provides conclusions and future directions.

Materials and methods of research

2.1 Review of Shamir Secret Sharing Scheme

(t,n) threshold Shamir scheme is based on Lagrange polynomial interpolation. Let s € GF(q)
be the secret where GF(q) is a finite Galois field with q elements. The dealer selects a random
polynomial of degree (t — 1) as follows:

t—1

f(x) =s+2aiximodq
i=1

where a,, a,, ..., a1 are chosen randomly over GF(q). For sharing the secret n distinct real
numbers X4, Xz, ..., Xn are selected and the shares s; = f(x;) are calculated for each participant. In the
reconstruction phase, at least t participants can reconstruct the secret by using Lagrange
interpolation:

px)= Z[p’(x’) H ::__j;’ J(modq)
i=1 ]

1<j<tizj 1 J

2.2 Review of Tassa’s Conjunctive Hierarchical Threshold Secret Sharing Scheme
Assume U = UL, , G, UiN Uj= 0, 0 <i<j<m,is a set of n participants that is composed of
m levels. The subset Ug is the highest level of hierarchy while Un, is on the least privileged level.
Let t = {t;}i~, be the threshold on different levels that is monotically increasing sequence of
integers, 0 <t; <--- <tm. The conjunction hierarchical threshold access structure is:
EIF.WE{O.L....m}l-

1"=[AcU: A(](OL’:) [

J=0

Tassa proposed a hierarchical threshold secret sharing scheme which is based on Birkhoff
interpolation that is perfect and ideal. I such a setting, the set of all participants is divided into
disjoint levels. Let the shared secret s be taken from GF(q). The dealer generates a random
polynomial F(x) € GF(q) of degree at most tm - 1 as follows:

F(x) = s+ ayx + ax® ..+ a;, _1x'™~

The shares s;, s; = Fi~1(x) are calculated for each participants of i th level of hierarchy
where Fti~1 () is the (ti - 1)th derivation of F(x) and £;=0.

2. A multilevel compartment threshold access structure

In order to reconstruct the secret image based on our proposed access structure, the provided
shadow images must satisfy the threshold requirement of each compartment, their internal
hierarchical levels, and the global threshold. First, the partial secret corresponding to each
compartment is recovered. Then, the complete secret image is reconstructed by combining these
partial secrets. A single compartment cannot reveal any meaningful information about the secret on
its own, as it can only recover its partial secret. Furthermore, the partial secret of a compartment
cannot be reconstructed unless the hierarchical threshold conditions within that compartment are
also satisfied. Therefore, the secrecy of the proposed scheme is ensured no information about the
original secret is leaked unless all access conditions are met.

Definition 2: C = {Ci, C,,..., Cn} are m distict compartments of n participants, (U = {1,2, ...
,np)and CNCj=0@ forall 1 <i<j<m.T={ty, to,..., tm} , 1 <t <|Cj, 1 <1 < m are threshold

1

25



K.XKy6anoB ateiHarsl AKTe0e OHIpIIiK yHUBepCUTETiHIH Xabapiusickl, Ne4 (82), sxentoxcan 2025
Odusuka-maremaTtuka-Ousnka-maremaruka- Physics-mathematics
value of each compartment and Y2, ¢t; , i <t < n is global threshold. Participants of each

compartment, Ci , are distributed into / distinct level in it, that means, C; =Uj—q U;; and Uy ;j N
Upjs1 =90, 0<j<I,1<i<m. k= {k; f};—o are monotonically increasing threshold value for each

levels of compartments, 0 < kg < --- < k;; and ¢; = ki; . The proposed multilevel compartment
threshol access structure is given in Eq.(1) and are illustrated in Fig.1:

{Aﬂ(_[_j U2k, .Vje{l.....l}}l

[AQU
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Figure 1 The multilevel compartment threshold scheme

3.1. Ideal secret sharing scheme for multilevel compartment threshold access structure

In this section, we propose a secret sharing scheme based on the approaches of Ghodosi and
Tassa for the access structure described in Definition 2. The participants are distributed into disjoint
compartments, with different levels of authority assigned within each compartment by the dealer.
The secret G is an element of the finite field GF(q). Let t > Y./~ t; be the global threshold, where

l
mmm denotes the number of compartments. Let k = {ki, j}j=0 represent the threshold values of each

hierarchical level within a compartment (where / is the number of levels in a compartment) and
ti=k;; denote the total number of participants required within compartment C; to reconstruct the
partial secret of that compartment. In this phase, the dealer performs the following steps:

Step 1: Define the polynomial

gx) =G+ cx+ -+ cp_1x™ € GF(q),

ci,....cm-1 are randomaly selected to produce partial secret for each compartment gi=g(x;),
1=1,....m . G=g(0) is the secret value.

Step 2: Select randomly 7; - 1 values @; 5, ..., @;,—1 to define m polinomial fi(x) coressponding

to each compartment as follows:
ti—1

fi(x) zgi—zai,jxj, i=1,..,m

j=1
Step 3: Since )%, t; <t we select randmly R =t — ),/%, t; values by,...,bg-; to determine f(y)

polinomial as follows:
ti+R—-1

FO)= ) biyy!

i=t;
Step 4: Define f; ;(x, y) polinomial for each compartment as follows:

fij(x,y) = (]"i(x))ki‘j_1 + f(y), i =1,...,m (m is number of compartment) and j=0,...,/ (/ is
the number of levels of a compartment), (k; _, = 0) and (f; (x))ki‘j -

fi(x).

means k; ;_;th derivation of
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Step S: Choose (x; j,, y; j,)# 0 value for each participant u; j € U; j€ C;, 1 < z < n; (n; is the
number of participants of each compartment). The pair value of (xl-’ i Vi, jz) is differnet for two
distict participants. f; ; (xi, i Vi, jz) is the shared value of each participant.

Corollary: The proposed multilevel compartment secret sharing scheme is perfect and ideal,
which is only, A € I" can recover the secret.

Proof: An authorized subset A € I' can reconstruct the secret G while an unauthorized subset
A¢I obtain any information about it. According to the predetermined threshold value # for each
compartment, at least tit_iti participants from each compartment must participate in order to reveal
the secret. Suppose {ni, ... , nm} be the number of participant of an authorized subset A where n;>
ti and Y%, n;>t. Hierarchical threshold requirements n,ﬂ(Ué=1 Ui,) = k; must be satisfied by n;
participants of each compartment. That means U}%, C; is an authorized subset of participants if |A| =
t,|ANGi| 21, € {1, ..., m} and C; ﬂué=1 U;,) = kj, j=0,...,I. To reconstruct the secret, all
participants of A € I' must pool together their shares to calculate a linear equation system. In this
linear system, the number of equations are at least the number of unknown that means each
compartment has # unknown coefficient g; , a;; and R unknown common b; in all compartment.
These equations are linearly independent, i.e, given coefficient values of each compartment form
one row of a matrix that are not the same and none of the rows can be a combination of other rows
or columns of a matrix. Therefore determinant of the reconstruction matrix cannot be zero. Then the
equation system has a unique solution since there are at least ¢ equations with ¢ unknowns. The
secret G can be recovered after recovering the partial secret, g; of each compartment.

An unauthorized subset A € I' can not reveal any information about the secret. First, If the
number of participants of each compartment be ai<t; , then the number of equations of the linear
system 1is lesser than unknowns coefficient so the system does not have any unique solution to
recover the partial secret of each compartment. Second, if the number of participants of each
compartment be a; >¢; but )72 a; < t then the values of by, ..., bg cannot recover. Third, suppose
the number of participants of each compartment be a; > and )./~ a; >t but the participants of each
compartment do not satisfy the hierarchical threshold requirement of each level, i.e., there are not
participants of higher level from a compartment. In this case the secret cannot be recovered since
there are not any participants of higher level that cause the determinant of linear equation zero. So
the coefficient matrix is not invertible. Secret accessibility by authorized and inaccessibility of
unauthorized subset of participants satisfy the perfectness of secret sharing scheme. This scheme is
ideal, since every participants has one share value over GF(q) and information rate is equal to one.

Example 1: Suppose there are two compartments with distinct participants in which the
threshold value of each compartment and global threshold are #,=4, 1,=5, ¢+ =10 respectively.
Compartment one have two distinct levels that threshold of each level are k=(ki,1, ki2)=(1,4). There
are three level in compartment two with threshold k=(k2;, k22, k23) = (1,3,5). Total number of
participants of an authorized subset A must be at least 10. Of these ten, at least four are from
compartment one and five are from compartment two. However since there are hierarchy authority
among participants of a compartment, then at least one participant in compartment one must be
from first level, U;, and at least four from U, ;UU; .. Collaborating participants of compartment
two must be at least five. Of these five, at least one from Uy level, three participants from
U;,/UU; 2 and five from U; ;UU; U Uzs. Since R =t — ),/ t; = 10 — 9 =1, at least one participant
can be from any of compartments and any of levels. The dealer constructs the following linear
system to shares secret among participants. In this system, gi and g» values of matrix I are partial
secrets of each compartment, matrix M is the coefficient matrix and matrix S is the shared value of
each participants.

27



K.XKy6anoB ateiHarsl AKTe0e OHIpIIiK yHUBepCUTETiHIH Xabapiusickl, Ne4 (82), sxentoxcan 2025
Odusuka-maremaTtuka-Ousnka-maremaruka- Physics-mathematics

810,

S10,

&£
[=J=]

S,

il

511,

S

S

Sa0,

o S o o 0g oo =1
R R N A R .
(P oA

(=T = -
(=2 ==
(=T = =
=l = -
(=2 ==

-

W s

[

In the reconstruction phase at least 10 participants pool together their shares to solve the
following linear system to calculate partial secrets, g; and g» . Then these partial secret are used to
reveal the secret G.
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4. A multilevel compartment secret image sharing scheme

In this section we propose a multilevel compartment secret image sharing scheme for
multilevel compartment access structure described in section.3 which involve two phases: sharing
and reconstructing. At first, the secret image S is divided among each compartment and then the
partial secret images are shared between participants according to their privilege in each
compartment. In the reconstructing phase, the threshold requirement of each compartment and their
levels as well as global threshold of multilevel compartment access structure must be satisfied to
reveal the secret image. Our main goal in this study is to reducing the size of storage requirement
which cause decrease in computational effort needs. Moreover, providing secrecy is foremost
concern addressing in this paper. That means in the reconstructing phase participants of higher level
of each compartment cannot be substituted by the lower levels.

4.1. Secret image sharing phase

In this phase we shared NxM secret image among a set of n participants of m compartment. ¢
(t is global threshold) pixels of secret image are taken as coefficient to produce partial shared values
for each compartment. Therefore these partial values are used as coefficient of defined equation of
each compartment to produce the shares for each participant of levels of compartments. The size of
shares is reduced by MxN/t in which storage requirement are decreased significantly. Sharing
algorithm is given in the following steps:

1. Scramble secret image by a permutation function.

2. If the value of pixel p; < 250, then do nothing, or if p; > 250, divide pi into two values 250
and (pi — 250) and store these values respectively.
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3. The secret image is divided into t disjoint groups, co, ... c~1, as the coefficient of the
following equation:

t—1
gx) = (Z cjxf> %251, (tis global threshold )
j=0

4. The solution set , x=(xo, ... x-1) € GF(q) 1is selected randomly by dealer to produce ¢
partial shared values as each compartment secret, a; = g(x;), i=1,...,t-1. Afterwards, these are used
as the coefficient for the following equations:

i
:=er_1+r,-—1 .p=t;—1

fi(x) = Z ax? 1,..,mand t, =0,

p=R.z=t-

1
= 2 ay’ (R=t-Xmt)

p=l.z=t-R

5. For each compartment we define equation, fi; (x,y) = ((f: (x))"i,-1 +fi (v)) %251. (ki; is each
level threshold of a compartment)

i= 1, ..., m (m is number of compartment) and j = 0, ... , [ (/ is the number of levels of a
compartment), (ks = 0) and (f:(x))%i;.; means (ki) th derivation of f’; (x)).

6. (x;:,v;: ) # Oare selected for i compartment of j# level’s z participants to produce the
iz Viis p J p p p

ki
shares of each participants as  s; ; (x;;,,%;j,) = (fl (xi, jz)) YTy fWij,)

7. Take succseesive pixels of unprocessed groups to obtain n shared images.

4.2. Secret image reconstructing phase

In order to reconstruct the secret image based on our proposed access structure, the provided
shadow images must satisfy the threshold requirement of each compartment, their internal
hierarchical levels, and the global threshold.

First, the partial secret corresponding to each compartment is recovered. Then, the complete
secret image is reconstructed by combining these partial secrets. A single compartment cannot
reveal any meaningful information about the secret on its own, as it can only recover its partial
secret.

Furthermore, the partial secret of a compartment cannot be reconstructed unless the
hierarchical threshold conditions within that compartment are also satisfied.

Therefore, the secrecy of the proposed scheme is ensured- no information about the original
secret is leaked unless all access conditions are met.

Results and its discussion

In order to demonstrate the correctness and feasibility of our scheme, we report some
implementation results. We used a grayscale image of a Dahlia flower, sized 210 x 210 pixels, as
the secret image, as shown in Fig. 2. The secret was shared among fifteen participants divided into
two compartments: the first compartment consists of nine participants, and the second includes the
remaining six participants. The shadow images assigned to each participant are depicted in Fig. 3.
The first compartment contains two hierarchical levels, while the second compartment consists of
three levels.We assume a threshold sequence of t; =4, t, = 5, and a global threshold t = 11, with
the detailed hierarchical access structure defined as:

kl = (klr 1 kl) 2) = (11 4) and kZ = (kZ; 1, k2r 2 kZ; 3) = (1; 31 5)
A reduction in the shadow image size by one-eleventh significantly decreases the storage
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requirements. During the reconstruction phase, the secret image can be recovered only if the access
structure requirements of authorized subsets are satisfied. Conversely, any unauthorized subset fails
to reconstruct the secret image, thereby ensuring that the scheme maintains perfect secrecy and
fidelity of the image.

Fig. 2. The secret image

compartement 1 Level 1 compartement 1 Level 2

QLA RO R R (T3 o

compartement 2 Level 1 compartement 2 Level 2 compartement 2 Level 3

Figure 3. (a) Shadow images of first (b) Shadow images of second compartment of scheme

By selecting multiple pixels of the secret image as secret values in each step, the storage
requirements are significantly reduced. Additionally, reducing the size of the shadow images further
decreases the computational effort required for reconstruction.

Distortion is a critical factor in evaluating the quality of the reconstructed secret image. The Peak
Signal-to-Noise Ratio (PSNR) is commonly used for this purpose and is defined as:

PSNR = 10 % logyo (255%/ MSE) dB, 2)
where MSE (Mean Square Error) is defined as:
MSE = (1/ M*N) S5V (S; — R))? 3)

Here, S; and R; are the pixel values of the original and reconstructed images, respectively.

In our proposed scheme, we adopt Thien and Lin’s method to ensure distortion-free
reconstruction of the secret image. The slight increase in the size of shadow images is negligible
and does not impact overall efficiency. Notably, when the MSE value is zero, the PSNR tends to
infinity, indicating a perfectly reconstructed image.

Conclusion

The main objective of this paper is to introduce a novel concept called the multilevel
compartment access structure. Our proposed scheme incorporates hierarchy within the
compartmental access model, resulting in a perfect multilevel secret sharing scheme. In this
structure, an authorized subset of participants can successfully reconstruct the secret image, whereas
any unauthorized subset gains no information—thus ensuring the security and confidentiality of the
shared data.

In this study, we present a multilevel compartment secret image sharing scheme inspired by
the works of Tassa and Ghodosi et al., employing Birkhoff interpolation and polynomial-based
techniques. By selecting multiple pixels of the secret image as secret values at each step of the
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proposed scheme, the overall storage requirements are significantly reduced. Moreover, the
reduction in shadow size leads to a substantial decrease in the computational effort required for
secret reconstruction.
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Anpatna. JlocTypni KymusHbl Oeny cxeMaiapbl TOm Hemece OeliM imriHmeri OapibIK KaTbICYIIBLIAPIBIH
KYIWSIHBI KallblHA KenTipyne Oipmeil eKiJIeTTUTKKe We eKeHiH OoJpKaiimpl. Anaiia IIBIHAWBI eMipAe — MBICAIIBI,
nepapxusulblK YHBIM/IAapJa HeMece Kayillci3 KeIDKaKThl BIHTBIMAKTAaCTHIKTa — Oy Ooinkam coiikec kenmeiiai. Ocbl
LIEKTEYl KO0 YIIiH 0i3 nepapXusulblK JeHreliepre ne KenaeHreini oemiMaik mekrti Kynus keckingai 6exy (MCT-SIS)
aTThI )KaHa cXxeMaHbl ychiHaMbl3. by cxema Tacca ycbIHFaH MepapXHsUIBIK KOJI JKETKi3y KypbUIbIMBIHA koHe ['xomocn
CEeKIMSITBIK MOJIeTIiHe HeTi3aenin, bupkrodd uHTEpMONAIUICH MEH MOJWHOMIBIK SICTeP/Ii KOJTaHa OTBIPHII, CEHIMII
KOHE HMKeMJII KeCKiH 0ely MYMKIHZIriH ycwiHaael. KaTeicymisimap e3apa KWBUIBICIIAWTHIH Oerimaepre OemiHeni,
OJIapIBIH OpKANHCHICBIHAA KOJ JKeTKi3yniH OipHeme neHreii 6ap. Kymust keckiH Tek 0eTiMIiK XKoHE HepapXUsUIBIK IIEKTI
TajanTap OpbIHAAJFaH/Ia FaHa KaJIIbIHA KeNTipijeni. By cxema MiHCI3 KYNHMSJIBUIBIKTHI, aKayChI3 KAJIbIHA KEeNTipyi
JKOHE CaKTay KeJIeMiHiH a3al0bIH KaMTaMachl3 eTedi. DKCIepUMEHTTIK HOTIXKeep OyJI TOCIIAIH THIMAUIITIH KepceTir,
OHBI JiepeKTepai Oipirim Oackapy, MeIMIMHANBIK OciHeNey jkyienepi jkoHe Kayilci3 KemareHTTi opTaja KoJJaHyFa
0OJIATBIHBIH JIQJIENIE .

Tyiiin ce3mep: Kymust KeckiHai Oeiy, IIEKTI cxema, KeryeHrewni Oerim, bupkrod¢ wuHTEpnOIAIMACEH,
HEePapXUSITBIK KayIiICi3miK.

32


https://orcid.org/0000-0003-0314-8134
https://orcid.org/0000-0002-7557-2877
https://orcid.org/0000-0003-0314-8134
https://orcid.org/0000-0002-7557-2877

K.XKy6anoB ateiHarsl AKTe0e OHIpIIiK yHUBepCUTETiHIH Xabapiusickl, Ne4 (82), sxentoxcan 2025
Odusuka-maremaTtuka-Ousnka-maremaruka- Physics-mathematics
CXEMA PACIIPEAEJIEHUA CEKPETHOI'O U30BPAKEHUSA C IIOPOI'OBBIM
JOCTYIIOM B MHOT'OYPOBHEBOM CEKIITMOHHOM CTPYKTYPE

HABMEB B." ", CYJIEHMAH3AJIE K.

“Haduers Bacud' — PhD, npodeccop, dakynbTeT uHkeHepHH, Kadeapa KOMIbIOTEPHON MHKeHepUH, UepHOMOPCKHMI
TEXHUYECKHUH YHUBEpCUTET, . Tpab3oH, Typuus

E-mail: vasif@ktu.edu.tr, https://orcid.org/0000-0003-0314-8134

Cyaeiimanzage Karupa? — PhD, mnpemomaBarens, (axyibTeT HHKEHEPHM H €CTECTBEHHBIX HaykK, Kadempa
MIPOTPaMMHOM WH)KEHEpUH, Y HUBEPCHUTET 3ApaBoOXpaHeHus U TexHoioruit CramOyna, r. CramOym, Typuus

E-mail: katira.soleymanzadeh@istun.edu.tr, https://orcid.org/0000-0002-7557-2877

AHHoOTanus. TpaguIMOHHBIE CXEMBI paclpe/ieIeHUs CeKpeTa MpeAoaratT, YTO BCE YHJaCTHUKU B TPYIIE WU
CeKIMM 00JIafaoT paBHBIMHU IPaBaMH Ha BOCCTaHOBIEHHE cekpeTa. OJHAKO BO MHOTHX peajbHBIX NPHIIOKCHUSIX,
TaKUX KaK HEPapXHUUECKHe OpraHU3alMOHHbBIE CTPYKTYPHI WK 0€30IacHOE MHOTOIMOJIB30BATEIbCKOE COTPYJHUIECTBO,
3TO MPEATNONIOKEHWE HE BHIMONHAETCA. [l MpPEeoJoNeHHWs S3TOr0 OTpaHMYECHHS MBI IIpelylaraéM HOBYIO
MHOTOYPOBHEBYIO CXEMYy CEKIIMOHHOTO pacIpeleNieHHs CEKpeTHhIX m300paxeHuit ¢ moporom (MCT-SIS), koTtopas
BBOJUT HMEpapXW4ecKUe MPUBWICTUN BHYTPH KaxI0i cekumu. Hamia cxema OCHOBaHA HAa COYETAaHUH HEPAPXHICCKOH
CTPYKTYpBI nocTyma TacChl M CEKIMOHHON Monenu ['Xomocw, ¢ HCHOIb30BaHMEM WHTEpHOMsInnu bupkroda n
MOJMHOMHAIIBHBIX METOJOB NI JOCTIDKECHHSA HAAEKHOTO M THOKOTO pacmlpenesieHHus H300paXeHHH. YYacTHHKH
pacnpenensioTcss IO HENepeceKalolnMMCcs CEeKLUAM, KaxXJas U3 KOTOPBIX HMeeT HECKOJBbKO YPOBHEH mocTyma.
CekpeTHOe H300paKEHHE MOXKET OBITh BOCCTAHOBJICHO TOJIBKO TMpPH COONIONCHHM KaK CEKIIMOHHBIX, TaK U
HepapxUvecKUX MIOPOroBbIX ycioBuil. CxeMa o0ecrneynBaeT HiealbHyl0 CeKPETHOCTh, 0€30IIMO00YHOE BOCCTAHOBIICHNE
U CHIKEHHE O00bEMa XpaHeHHs. OKCHEpHMEHTAIbHbIE pe3yJbTaThl MOATBEPXKIAIOT €€ dddeKkTUBHOCTE U
MIPUMEHNUMOCTh B YCIOBHSAX, TPEOYIOIIMX JETaIM3MPOBAHHOIO YIPABICHUS [OCTYNOM, TaKHMX KaK COBMECTHBIC
XpaHWINILA JaHHBIX, MEIUIMHCKNAE CUCTEMbI BU3yaIH3aIlMH 1 O€30TIacHbIE MEKBEIOMCTBEHHBIE OTIEPAIIHH.

KnaroueBble ci10Ba: cexkpeTHOE pacmpelesieHne H300pakeHWH, MOporoBas CXeMa, MHOTOYPOBHEBas CEKIHS,
unTepnosnus bupkroda, nepapxuueckast 6€30macHOCTb
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