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Abstract. Retinal vessel segmentation is critically important for the early diagnosis of ocular diseases such as diabetic
retinopathy, macular degeneration, and retinopathy of prematurity (ROP). In this study, the performance of an Attention U-
Net-based deep learning architecture was evaluated for vessel segmentation on fundus images. The model was trained and
tested on the DRIVE (Digital Retinal Images for Vessel Extraction) dataset using appropriate preprocessing steps. The
experiments yielded a test F1-score of 0.81 and a final test accuracy of approximately 0.97. Evaluation metrics included
accuracy, sensitivity, specificity, precision, F1-score, Jaccard index (loU), and Dice coefficient. Structural challenges such as
class imbalance and the accurate detection of fine vessel structures were also addressed. Furthermore, the model was tested
on retinal images from external datasets not seen during training, where it successfully produced accurate segmentation
results. These outcomes demonstrate the model’s strong generalization capability, confirming that it can effectively segment
retinal vessels not only within the training domain but also across images from different sources. Overall, the results indicate
that the Attention U-Net architecture offers a reliable and practical solution for retinal vessel segmentation in clinical
applications.
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Introduction

Retinal blood vessels are the only terminal vascular structures that can be directly observed in the
living human body. This unique characteristic allows retinal images to serve as critical biomarkers for
the diagnosis of systemic diseases [1]. Accurate segmentation of retinal blood vessels plays an important
role in the diagnosis and monitoring of conditions such as diabetic retinopathy, glaucoma, hypertension,
and cardiovascular diseases [2]. Changes in vessel thickness, branching patterns, and vessel density may
provide structural clues that can be detected even in the early stages of these diseases.

Traditional image processing techniques may fall short when dealing with challenges such as low-
contrast vessel structures and background noise. In recent years, deep learning-based methods have
played a significant role in overcoming these limitations. In particular, architectures based on
convolutional neural networks (CNNs) have come to the forefront in the field of biomedical image
segmentation. Convolutional neural networks (CNNSs), especially with the U-Net architecture [3], have
marked a turning point in biomedical image segmentation. The encoder—decoder structure of U-Net,
along with its skip connections, enables it to model both low-level details and high-level contextual
information simultaneously. In the context of retinal vessel segmentation, advanced architectures such
as U-Net [3] and its attention-based variants have demonstrated remarkable success.
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Figure 1. U-Net Architecture

This study evaluates the performance of an Attention U-Net-based architecture, implemented using
the PyTorch deep learning framework, on the task of retinal vessel segmentation using the DRIVE
dataset. To address various challenges such as class imbalance and fine vessels, a HybridLoss function
was designed, combining Binary Cross Entropy (BCE), Dice Loss, and Focal Loss with weights (a, B,
1-a—fB), emphasizing the positive class. The weights were automatically optimized using Softmax
normalization. To ensure training stability, gradient clipping was also applied. The segmentation outputs
were analyzed using accuracy, sensitivity, specificity, precision, F1 score, Dice coefficient, and Jaccard
index (IoU) metrics, aiming to identify the most suitable architecture for clinical applications.

Accurate segmentation of retinal vessels is critically important for the early diagnosis and treatment
planning of ophthalmic diseases such as diabetic retinopathy, glaucoma, hypertensive retinopathy, and
retinopathy of prematurity (ROP) [4]. Traditional segmentation methods typically rely on matched filters
[5] and morphological operations [6]. However, these techniques often struggle when faced with
challenges such as low-contrast vessel structures and background noise [7].

In recent years, deep learning-based approaches have gained significant momentum in overcoming
these limitations. Among them, the U-Net architecture—owing to its encoder-decoder structure and skip
connections—has become one of the most widely used deep learning models for medical image
segmentation tasks [3], [8]. Wang et al. [9] directly applied U-Net to retinal vessel segmentation and
demonstrated its effectiveness in successfully transferring contextual information during the upsampling
process [9].

Attention U-Net has achieved improved segmentation performance, particularly in capturing fine
vessel structures, by incorporating attention mechanisms into its skip connections [10]. UNet++ [11]
enhanced segmentation performance through deep supervision and nested skip connections. R2U-Net
[12] combined residual and recurrent blocks to achieve stronger representational capacity, especially
when working with limited datasets. Meanwhile, M2U-Net [13], which integrates MobileNetV2 into the
U-Net framework, improved computational efficiency, making it more suitable for real-world
applications.

LadderNet [14] extended the U-Net architecture through multiple pathways, enabling richer
contextual information flow, which facilitated more precise detection of vascular structures. Guo et al.
[15] proposed the SA-UNet model by incorporating a spatial attention module into the U-Net framework.
This model demonstrated enhanced segmentation performance, particularly in regions containing low-
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contrast and thin vessels. T-Net, introduced by Khan et al. [16], is a lightweight variant of U-Net designed
to operate efficiently on resource-constrained devices.

Generative adversarial networks (GANs) have also been utilized to enhance segmentation
accuracy. In particular, RV-GAN [17] achieved high accuracy by balancing the continuity of fine vessels
with the reduction of false positive rates. Attention mechanisms and multi-scale feature refinement
blocks, combined with transformer-based models and GANs, have further improved segmentation
quality [18], [19]. VGA-Net [20] integrated graph convolutional networks with attention mechanisms,
achieving superior performance in the segmentation of fine vessels. GCC-UNet [21] employed capsule
convolutions to effectively learn both local and global vascular structures. SFNet [22] combined spatial
and frequency-domain networks, demonstrating effective performance particularly in wide-field OCTA
images. The RLAD framework [23] enhanced the generalization capacity of segmentation models by
8.1% through diffusion-based synthetic data generation. U-Net and its variants—whether in their
conventional forms or advanced versions supported by GANs and transformers—remain among the most
effective solutions in the field of retinal vessel segmentation.

Materials and methods of research

In this study, the Attention U-Net deep learning architecture was thoroughly examined for the task
of retinal vessel segmentation. The model was developed within the PyTorch framework, and
experimental data were recorded throughout the training processes. The DRIVE dataset was utilized for
both training and evaluation phases. Retinal images were resized to 512x512 pixels, converted to
grayscale, and processed using Contrast Limited Adaptive Histogram Equalization (CLAHE) and gamma
correction (y = 1.2), through the custom-developed RetinaDataset class. Finally, the preprocessed images
were normalized to the range of [-1, 1].

1. Orijinal RGB

Figure 2. Retinal Image Preprocessing Steps:
Original RGB Image, Grayscale Conversion, CLAHE and Gamma Correction

The training was conducted over 100 epochs. The AdamW optimization algorithm was employed,
with the learning rate dynamically adjusted using the OneCycleLR scheduler under a cosine annealing
strategy. To mitigate the risk of overfitting, a weight decay parameter of 1e-4 was applied.

As the loss function, a three-component HybridLoss was designed to account for class imbalance
and varying sample difficulties. This structure combines weighted Binary Cross Entropy (BCE), Dice
Loss, and Focal Loss, with a weight of 15.0 assigned to the positive class to ensure balanced learning.
The weights (a, B, 1 — a — ) were automatically optimized during training via Softmax normalization.
To enhance training stability, gradient clipping was applied.

In the proposed architecture, multiple attention mechanisms were integrated to enhance feature
representation and focus on vessel-like structures more effectively. Specifically, Channel Attention (CA)
and Spatial Attention (SA) modules were applied at each encoding and decoding stage. The Channel
Attention mechanism recalibrates the channel-wise feature responses by employing both average and
max pooling, followed by a shared fully connected network and sigmoid activation. This process allows
the model to emphasize informative feature maps while suppressing irrelevant ones.

In parallel, the Spatial Attention module captures spatial dependencies by applying convolutional
operations over combined average-pooled and max-pooled spatial features, guiding the network to focus
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on vessel-relevant regions within each feature map. Additionally, Attention Gates (AGs) were
incorporated into skip connections between the encoder and decoder, enabling the model to selectively
highlight relevant spatial features during the upsampling process, thereby reducing the propagation of
irrelevant background information. By combining channel-wise, spatial, and attention gating
mechanisms, the model was able to dynamically prioritize informative features and improve vessel
segmentation accuracy, particularly for thin and low-contrast vessels.

The model performance was evaluated using six core metrics: Dice Coefficient, Intersection over
Union (loV), Precision, Recall, F1-Score, and Accuracy. The Attention U-Net model was trained and
tested under consistent conditions, including the same dataset, preprocessing steps, hyperparameters, and
evaluation criteria throughout the experiments. This controlled setup ensured that the obtained
performance results reflected the true capabilities of the Attention U-Net architecture, allowing for a fair
and reliable assessment.

Results and its discussion

The hyperparameters used in this study are summarized in Table 1. All models were trained
under identical configurations, and the comparative evaluation was conducted under similar conditions
to ensure a fair and consistent performance analysis.

Table 1. Hyperparameter Values Used in Model Training

Hyperparameter | Value Hyperparameter | Value Hyperparameter Value

adam_betas [0.9,0.999] | loss function HybridLoss | loss alpha 0,4

batch_size 4 Ir_scheduler OneCycleLR | loss beta 0,4

Epochs 100 optimizer AdamW loss gamma 2

validation_split | 0,2 weight_decay 0,0001 learning_rate 0,001
(start)

The model’s performance metrics on the test dataset are presented in the graph below (Figure 3).
The Attention U-Net model achieved a Dice coefficient of 80.09%, an F1-score of 80.06%, and an
accuracy of 96.71% on the test set. These results clearly demonstrate the high performance of the
Attention U-Net in the task of retinal vessel segmentation.

Test Dataset Accuracy
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Figure 3. Model Performance Results on the Test Dataset Based on F1-Score, Dice Coefficient,
and Accuracy Metrics.

The interpretation of these metrics alone is not sufficient. The general learning behavior of the
models was also monitored through the training and validation process curves obtained throughout model
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training. These curves provided insights into the models' convergence patterns, stability, and potential
overfitting tendencies.

1. Training and Validation Process Analysis

In this section, the training and validation performance of the Attention U-Net model is presented
graphically. The evolution of core evaluation metrics—Dice Coefficient, Intersection over Union (loU),
Precision, Recall, F1-Score, and Accuracy—across epochs is visualized. Dice and loU metrics reflect
the overlap between predicted and true vessel regions, while Precision and Recall highlight the model's
detection accuracy and completeness, respectively. F1-Score balances these two measures, and Accuracy
indicates the model's overall pixel-level classification performance. The plotted curves help to assess not
only how these metrics improved during training but also the model’s generalization capacity over
unseen validation data.

To quantitatively evaluate segmentation performance, six core metrics were employed:

« Precision: Measures the proportion of correctly predicted vessel pixels to all pixels predicted as
vessels.

= Precision = TP / (TP + FP)

* Recall: Measures the proportion of correctly predicted vessel pixels to all actual vessel pixels.

= Recall = TP / (TP + FN)

« Dice Coefficient: Calculates the overlap between predicted segmentation and ground truth,
balancing both precision and recall.

*"Dice=2xTP/(2x TP + FP + FN)

* Intersection over Union (loU): Also known as the Jaccard Index, measures the ratio of
intersection to union between predicted and actual vessels.

=" loU=TP /(TP + FP + FN)

* F1-Score: The harmonic mean of precision and recall.

= F1-Score = 2 x (Precision x Recall) / (Precision + Recall)

« Accuracy: Represents the overall proportion of correctly classified vessel and background pixels.

= Accuracy = (TP +TN) /(TP + TN + FP + FN)

Together, these metrics provide a comprehensive evaluation of both the pixel-level classification

performance and the structural segmentation accuracy of the model.
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Figure 4. Variation of F1-Score on the Validation Set Throughout Epochs,
Reflecting the Balance Between Precision and Recall.
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Figure 5 presents the validation loss curve of the Attention U-Net model. A significant decrease in
validation loss was observed during the first 40 epochs. In the subsequent epochs, the loss value stabilized
within the range of approximately 0.12-0.15, maintaining a consistent trend. This indicates that the
model did not exhibit overfitting during the training process and demonstrated strong generalization
capability on the validation dataset.

Validation Loss
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Figure 5. Variation of Validation Loss Values Across Epochs.

Figure 6 illustrates the variation of training loss across epochs for the Attention U-Net model. From
the early epochs, the training loss consistently decreased, reaching approximately 0.12 by around the
80th epoch, and remained stable thereafter. This indicates that the model successfully adapted to the
training data and performed stable optimization throughout the learning process. As no significant
fluctuations or sudden increases were observed, it can be concluded that the training process progressed
in a balanced manner, with model weights being updated appropriately.

Train Loss

Epoch

Figure 6. Epoch-wise Variation of the Model’s Training Loss Throughout the Training Process.
2. Comparison of Validation Metrics
(Dice Coefficient, Accuracy, Precision, Recall, and loU):
The following graphs (Figures 7 —11) present the performance of the model across various metrics
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during the validation process. The Attention U-Net model demonstrated stable and high performance
across key evaluation metrics, including accuracy, Dice coefficient, recall (sensitivity), and specificity,

indicating a balanced and robust segmentation performance.
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Figure 8. Epoch-wise Variation of Accuracy Values on the Validation Dataset.
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Figure 9. Epoch-wise Variation of Precision Values on the Validation Dataset.
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Figure 10. Epoch-wise Variation of Recall Values on the Validation Dataset.
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Figure 11. Epoch-wise Variation of Intersection over Union (loU) Values on the Validation Dataset.

3. Confusion Matrix Analysis
The confusion matrix of the model on the test dataset is presented below (Figure 12). The Attention

U-Net demonstrated an overall balanced segmentation performance, characterized by a high true positive
(TP) rate and a low false positive (FP) rate.

Predicted Category

Background 69.3k

Vessel 103k 355k

Actual Category

Background
Vessel

Figure 12. Confusion Matrix Output of the Model.
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4. General Evaluation

Considering all these results, Attention U-Net has been evaluated as a reliable and recommendable
model, distinguished by its balanced performance across all metrics, low validation loss, and overall
stability. However, it was also observed that employing a hybrid loss function, combining binary cross-
entropy and Dice loss, is necessary to better capture thin vessel-like structures and to minimize class
imbalance effects.

The performance of the Attention U-Net model was evaluated not only on the test images of the
DRIVE dataset but also in terms of its generalization capability. For this purpose, the model was tested
on two retinal images from a different dataset that it had never encountered during training. In Figure
13, the original fundus images and the corresponding segmentation outputs generated by the model are
presented side by side. Importantly, no special preprocessing or additional enhancement was applied to
these new images. The model was tested directly on these raw images and was able to produce high-
quality vessel segmentation results. This demonstrates that the Attention U-Net model does not rely
solely on the training data and can effectively handle data from different sources with varying image
characteristics.

In conclusion, even on these new images from a different dataset, without any preprocessing, the
model successfully segmented fine vessels, accurately delineated vascular structures, and exhibited
strong generalization capability. This is a significant advantage for the model’s practical applicability in
clinical environments.

(a) Original Image 1

) N

ut 2

(c) Original Image 2 (d) Segmentation Ot
Figure 13. Generalization performance of the model on unseen images without additional
preprocessing.

In this study, the performance of the Attention U-Net architecture was thoroughly analyzed for the
retinal vessel segmentation problem. Evaluation metrics such as F1-score, accuracy, recall (sensitivity),
and specificity, obtained throughout the validation process, demonstrated that the model achieved an
overall balanced and successful segmentation performance (Figures 5-11).

In particular, the rapid increase in the F1-score from the early epochs and its stabilization within
the 0.75-0.80 range after the 20th epoch indicate the model's strong learning capability and robust
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generalization performance.

Analysis of the validation loss curve (Figure 5) revealed that from approximately the 40th epoch,
the model maintained a stable and low loss within the 0.12—0.15 range. Similarly, the training loss curve
exhibited a continuously decreasing and stable pattern (Figure 6). This indicates that the model did not
show a tendency toward overfitting and was able to establish a strong balance between the training and
validation datasets.In the segmentation outputs, the model not only accurately detected vessel structures
but also maintained a controlled false positive rate, supported by a balanced trade-off between precision
and recall.

One of the key factors contributing to the model’s success was the use of the HybridLoss function.
This function combines Binary Cross-Entropy (BCE), Dice loss, and Focal loss with dynamically
adjusted weights. It enhanced the model’s adaptability in addressing critical challenges such as class
imbalance, detection of fine vessel structures, and edge accuracy.Analysis of the weight evolution of the
loss components throughout the training process showed that different types of loss functions were
prioritized at different stages. This highlights the adaptive nature of the loss function, which offers a
significant advantage in sensitive domains like medical imaging.

Despite the limited sample size of the DRIVE dataset, the stable validation curves and metric values
obtained from the Attention U-Net model indicate that the architecture can deliver effective results even
with small datasets. However, evaluating the model on larger and more diverse datasets represents an
important direction for future work, as it would provide deeper insights into the generalizability of the
segmentation performance.

A comprehensive evaluation was conducted not only based on metric scores but also by focusing
on training and validation curves, overfitting behavior, loss function stability, and the model’s overall
learning dynamics. Considering both the theoretical structure and practical application results of the
Attention U-Net, it was concluded that this architecture offers a reliable and applicable solution for
medical image segmentation problems.

Conclusion

In this study, a deep learning-based Attention U-Net architecture was implemented for retinal
vessel segmentation, and its performance was evaluated in detail. The findings demonstrated that the
model provided a reliable and balanced segmentation performance, as evidenced by its stable trends in
validation loss, F1-score, and the precision—recall balance.

The applied HybridLoss function, which combined different loss components in a learnable and
adaptive manner, contributed significantly to the training process. This approach proved particularly
effective in addressing class imbalance and in accurately segmenting fine vessel structures. Such a
strategy offers a valuable contribution in sensitive domains like medical imaging, as it ensures flexible
and stable learning.

For future studies, it is recommended to evaluate the model on larger, more diverse, and multi-
modal datasets to assess its generalizability. Additionally, conducting comparative analyses with
Transformer-based architectures could contribute to advancements in the field. Moreover, the design of
lightweight models suitable for integration into real-time systems is considered an important research
direction, especially for clinical applications.
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Annarna. Top kaObIKmia (peTMHA) TaMBIPIAPBIH CETMEHTTEY — KAaHT aualeTiHe OaillaHbICTBI PETHHOMATHS,
MaKyJaJbIK JereHepalys KoHe Iaja TyFaH Hopectenepaid pernHonaTtuschl (ROP) cusKTHI ko3 aypynaapblH epTe aHbIKTay
YILIiH aca MaHbI3bL. byl 3epTTeyne ko3 TyOiHIH KeCKiHAEpiHIeT TaMbIpiiapAbl cerMeHTTey yiiH Attention U-Net HeriziHmeri
TepeH OKBITY apXMTEKTYPACBIHBIH oHiMaimiri Oaramanasl. Moxens DRIVE (Digital Retinal Images for Vessel Extraction)
JepEeKTep JKUBIHTBHIFBIHIA TUICTI aIIBIH ajla OHJIEY CaThUIAPBIH KOJIAHBII YHPETUIAl XKoHE TeKCcepiai. DKCIepUMEHTTEp
HOTIDKeciHAe TecT *ubHbHAa F1 xepcerkimmi 0.81 xone coHrbl monmik mamameH 0.97 6omapl. baramay xepcerkimrepine
IONIiK (accuracy), ce3iMTanbIK (sensitivity), epexmemik (specificity), HakTbuTHIK (precision), F1 xepcerkimm, JKakkap
unnekci (IoU) xone [aitc koaddumuenti kipai. Kimacc TeHrepiMci3airi xoHe ycaK TaMblp KYPbUIBIMIAPBIH JISJI aHBIKTAY
CHSKTHI KYPBUIBIMIBIK KUBIHABIKTap Oa eckepinai. COHBIMEH KaTap, MOZAENb OKBITY Ke3iHAe KONJaHBIIMaraH CHIPTKBI
JepeKTep >KUBIHTHIFBIHAAFEI TOp KAOBIKIIa KECKIHAEPIiHIE A€ CHIHAJBII, >KOFaphl TONIIKICH CETMEHTTEY HOTHXKEIEepiH
KepceTTi. bysl HoTIKenep MOIETB/IiH JKajbl KOJJaHbLTy KaOiIeTiHiH KOFaphl eKeHiH KOPCEeTeIl, XKOHE Ol TeK YHpeTireH
JepeKTepre FaHa eMec, 0acKa Ke3[epICH albIHFaH KeCKiHAepre Je THiMi KOJNJaHyFa OONATHIHBIH monenaerni. JKamrer,
HoTIDKenep Attention U-Net apXuTeKkTypachl KIMHAKAJBIK KOJIIAHY YIIiH CEHIM/I opi THIM/II IICMIiM eKeHiH KopceTe]Ii.

Tyiiin ce3mep: Top TaMBIPIIAPBIH cerMeHTanusuay, Tepe yipery, U-Net, Attention U-Net, DRIVE nepekrep sKUHAFBI
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AnHotamus. CerMeHTauuss COCyJOB CETYaTKH MMEET pellalollee 3HaueHWe JUIs paHHeH JWarHOCTHKH
oranpMonoruueckux 3ab0JeBaHUM, TAaKMX Kak JHa0eTHYecKas PETHHOMATHS, MaKyJsIpHas JereHepalys U peTUHOMATHs
HenonoureHHblx (ROP). B nanHoMm uccnenoBanuu Obuia orieHeHa 3(PEKTUBHOCTh apXUTEKTYpPhI TIyOOKOro oOy4deHus Ha
ocHoBe Attention U-Net 1uist cerMeHTalu cocy10B Ha N300pakeHUsIX rila3Horo JHa. Mozenb o0y4anack U TECTHPOBAJIACH
Ha HaOope manHbix DRIVE (Digital Retinal Images for Vessel Extraction) ¢ ucnonb30BaHHEM COOTBETCTBYIOIIUX STAIlOB
npenodpadboTku. DkcriepuMmeHThl nokazanu Fl-omnenky 0.81 u wurtoroByro TouHocth okono 0.97 Ha TectoBOM Habope.
MeTpuKH OIIEHKH BKJIIOYAIH TOYHOCTh, YYBCTBUTEIBHOCTH, CHENM(PHYHOCTh, TOUHOCTH (precision), F1-orneHky, MHIEKC
XKaxkapa (IoU) u xoaddunment [aiica. bpuin Takke ydTeHbl CTPYKTYPHBIEC CIOKHOCTH, TaKHe KaK JUCOaaHC KIacCoB U
TOYHOE OOHAPY)KEHHE TOHKHX COCYAUCTBIX CTPYKTYyp. Kpome Toro, Monenb TecTupoBaiach Ha M300pa)KeHHUSIX CETYATKU U3
BHCUIHUX Ha6op013 JaHHBbIX, HC UCIIOJIb30BAaBIINUXCA B 06y1{eH1/11/1, TI€ TaKXE NOCTUIJTIA BBICOKHX PE3YJIbTATOB CEIrMEHTAllUU.
OTH pe3yabTaThl JEMOHCTPHPYIOT BBICOKYIO CIIOCOOHOCTH MOJENU K OOOOLICHHIO W TOATBEPIKAAIOT, YTO OHA MOXKET
3 PEKTUBHO CErMEHTUPOBATH COCYJBI CETYATKH HE TOJNBKO B MpeAenax o0ydaroliero JOMEeHa, HO U Ha M300paXeHHUsIX M3
Pa3IMYHBIX UCTOYHUKOB. B 11em0M, pe3ynbraThl MOKa3bIBalOT, YTO apxurekrypa Attention U-Net npennmaraer HaJae)xHoe U
MPAKTUIHOE PEIICHUE JUIsI CETMEHTAIlMN COCYOB CETUYATKHU B KIIMHUYCCKUX TTPUIIOKCHHUAX.

KunroueBble ci10Ba: cerMeHTaius COCyI0B ceTyatkH, rirybokoe ooyuenune, U-Net, Attention U-Net, nabop naHHBIX
DRIVE
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